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Diffusional relaxation in random sequential deposition
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Abstract. The effect of diffusional relaxation on the random sequential deposition process is
studied in the limit of fast deposition. Expressions for the coverage as a function of time are
analytically derived for both the short-time and long-time regimes. These results are tested and
compared with numerical simulations.

Diffusional relaxation in irreversible deposition processes of extended particles have been
investigated recently [1–7]. In the deposition process of immobile particles, called random
sequential adsorption (RSA), the asymptotic behaviour is dominated by the formation of
‘holes’ too small for a new particle to fill in, resulting in the jamming of the available area.
Diffusion allows non-effective depositions to be corrected in latter stages of the process.
Thus, the coverage reaches its maximal value—the closest-packing value—for long times.
The asymptotic filling process is dominated by the diffusive, power-law approach to the
steady state, as opposed to the exponential convergence to the jamming limit in the immobile
case of lattice models.

Two kinds of relaxation mechanisms were predominantly studied. First, particle
detachment was studied, both experimentally and analytically. Exact results were obtained
for special values of the parameters (detachment rate equal to deposition rate) [6]. In many
experimental situations, another relaxation process, diffusion of the deposited particles, is
more significant [3, 4]. It has been shown numerically that the effect of this diffusional
relaxation process in one dimension is a 1/

√
t asymptotic approach to the closest-packing

value. This result was supported by analytical arguments as well [5]. A somewhat different
model was also considered, in which the absorbed dimers are allowed to dissociate into
two independent monomers. Each monomer can diffuse to its nearest-neighbour sites. For
this version of the model, for special values of the parameters (deposition rate twice the
diffusion probability) an exact solution is available [7].

In this letter we study the combined effect of deposition and diffusion in one dimension,
in the regime in which the separation of time scales is possible—the deposition rate is high
and may be considered infinite with respect to the diffusion process. This regime is highly
relevant for experimental interest. We find two series expansions, relevant for short and
long times, which describe the whole dynamics of the filling process.

Our model is defined as follows. We take an initially empty linear one-dimensional (1D)
lattice containingN sites, with periodic boundary conditions to minimize finite-size effects.
First, particles are deposited randomly on the lattice up to the jamming limit. Each deposited
particle fills one lattice site and excludes further deposition in its nearest-neighbour sites.
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(This is also equivalent to the deposition of dimers with no neighbour exclusion.) Since
the deposition is considered fast, this process takes zero time. Then in each time step each
particle moves with probabilityε/2 to the right or left, if possible. Thus the probability for
a particle to move isε per time unit. Practically, when simulating the model numerically,
we can select at each time step onlyεN particles and move them with probability 1/2 to
the right or to the left. After every movement, if a space for an additional particle was
formed it is immediately deposited. We then look at the density as a function of time.

In order to simplify the following analysis, we first set up our terminology. At any stage
of the process, the lattice is filled by ordered regions, in which the particles are densely
packed such that there is only one empty site between adjacent particles. Neighbouring
regions are separated by two successive empty sites. Each region is termed ‘k-mer’ where
k is the number of particles in it. The probabilty of finding, at the initial state (jamming
limit), two empty sites to the right (left) of a filled site isp2 = e−2/ρr, where ρr is
the jamming limit density [8] (obviously, the probability of finding only one such site is
p1 = 1− p2). The probablity of finding a ‘k-mer’ at a certain position is thus given by
c0
k = ρrp

2
2p

k−1
1 . Therefore the initial concentration of the ‘k-mers’ is

c0
k =

2 e−4

1− e−2

(
1− 3 e−2

1− e−2

)k−1

. (1)

The only particles that may move in any time are those which are at the edges of thek-mers.
As a result of these motions thek-mers change their lengths. The only process enabling the
deposition of a new particle is a movement of a monomer. When a monomer moves, three
successive empty sites are obtained, a new particle is deposited and thek-mer andk′-mer
at two sides of the monomer become one big(k + k′ + 2)-mer.

Therefore, any change in the coverage results from monomer movement. Consequently,
the short-time behaviour is dominated first only by the monomer concentration. At later
times, monomers formed by the destruction of dimers contribute to the coverage as well,
and thus the dimers, trimers,. . . concentrations also play a role. In the short-time regime,
the dynamics of the concentration ofk-mersck is dominated by the transitions of ak-mer
to a (k ± 1)-mer. The other process of unification of ak-mer, a monomer and ak′-mer
into a long(k + k′ + 2)-mer can be neglected to first order in time, since it generates only
4-mers or longer chains and these do not contribute to the density up to fifth order. We
thus have the following rate equations

ċ1 = ε(−2c1+ c2)

ċk = ε(ck−1− 2ck + ck+1) k > 1 (2)

with the initial conditions (1). Successive approximations can be obtained by truncating the
equation system aftern equations, fixingcn+1 at its initial value. The result forc1 is then
exact forn orders, and the coverage, which is given by

1ρ(t) = ε
∫ t

0
c1(t) dt (3)

is exact for(n+ 1) orders. Up to the fourth order in(εt) the density is given by

1(4)ρ(t) = c0
1(εt)+ (−2c0

1 + c0
2)
(εt)2

2
+ (5c0

1 − 4c0
2 + c0

3)
(εt)3

6

+(−14c0
1 + 14c0

2 − 6c0
3 + c0

4)
(εt)4

24
+O(t5). (4)
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Figure 1 presents a comparison of the first four partial sums with the results obtained from
a numerical simulation using aN = 256K lattice. Clearly, the fourth-order expansion
approximates the real curve up toεt = 1.

Figure 1. Numerical results for the coverage for short times, plotted againstεt , compared to
the first four short-time approximations.

In order to study the long-time behaviour, we change our point of view. We call each
two adjacent empty sites between successivek-mers a ‘hole’. The diffusion of particles
at the edges of the monomers is equivalent to the diffusion of these holes [5]. At the
course of the hole diffusion, when two such holes are on adjacent sites, a space for a new
particle is formed, and after its deposition the two holes annihilate. We thus see that our
model is equivalent to the model ofN random walkers on a lattice which annihilate each
other when joined. This model is well known and was used especially to describe the
dynamics of chemical reactions of the typeA + A → inert [9–11]. In what follows we
apply the analytical treatment developed for the reaction–diffusion problem to our model
and obtain an asymptotic series for the density. The two series, the asymptotic one and the
previous short-time expansion, describe the entire time regime very well, as can be shown
by numerical results.

We wish to map our model to a standard model of annihilating random walks for which
a rigorous result is known. We note that there are some differences between this standard
model and the diffusing holes: (a) when a particle at the edge of ak-mer moves, the hole
changes its position bytwo lattice sites. Thus, the diffusion constant is four times larger.
(b) The distance between adjacent holes is always an odd number of sites. In particular, in
the initial configuration the distances are odd. (c) The annihilation process occurs whenever
the distance between the holes is one site and not when they are on the same site as in the
standard model. Accordingly, in the initial state the minimal distance between successive
k-mers is three sites. However, one expects these two differences to have no effect for long
times for which the behaviour is dominated by holes far from each other. This is confirmed
by our numerical results.

Thus we consider a model of random walks (RWs), originally distributed randomly on
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the lattice, with density

ρ̃ ≡ ρ̃(0) = 2(1− ρr) = e−2. (5)

The RWs moves with probabilityε two sites to the right or left. When two such RWs
join, they are annihilated. This model was solved exactly [10, 11] and we here follow the
derivation given by Spouge [10]. Defineβk(n) to be the probability of thekth RW to be at
a distancen from the origin

βk(n) = ρ̃k(1− ρ̃)n−k
(
n− 1

k − 1

)
. (6)

β−(n) is then defined by

β−(n) := δn,0+ 2
∞∑
k=1

(−)kβk(n) = δn,0− 2ρ̃(1− 2ρ̃)n−1. (7)

One also definesa(t; n) which is the probability that two RW, whose original distance was
n, do not meet until timet . In our model

a(t; n) = Ĩn(4Dt)+ 2
∞∑

k=n+1

Ĩk(4Dt) (8)

where Ĩn(x) := e−xIn(x), In(x) is the modified Bessel function of integer order andD is
the diffusion constant of the particles.

Given the above definitions, Spouge’s main result is

ρ̃(t) = ρ̃
∑
n

a(t; n)β−(n). (9)

Substituting the above expressions for our model we get

ρ̃(t)/ρ̃ = 1− 2ρ̃
∞∑
n=0

(1− 2ρ̃)n
[
Ĩn+1(4Dt)+ 2

∞∑
k=n+2

Ĩk(4Dt)

]

= 1− 2ρ̃
∞∑
k=1

Ĩk(4Dt)[q
k−1+ 2qk−2+ · · · + 2q0]

= 1−
∞∑
k=1

(2− qk−1− qk)Ĩk(4Dt)

= Ĩ0(4Dt)+ (1+ q)
∞∑
k=1

qk−1Ĩk(4Dt) (10)

whereq = 1− 2ρ̃. A similar expression was given by Baldinget al [11]. The particle
density is given in terms of the hole density through the relationρ = (1− ρ̃)/2 and thus one
obtains for the difference between the density and the maximal, closest packing, density

ρcp− ρ(t) = ρ̃(t)/2= e−2

2

[
Ĩ0(4Dt)+ (1+ q)

∞∑
k=1

qk−1Ĩk(4Dt)

]
. (11)

The diffusion constant is determined easily through the relation〈r2〉 = 2Dt resulting in
D = 2ε. Now, the asymptotic behaviour follows from the known asymptotics of the Bessel
functions [12]

Ĩk(z) = 1√
2πz

[
1− µ− 1

8z
+ (µ− 1)(µ− 9)

2!(8z)2
− · · ·

]
µ = 4k2. (12)
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To the first order, all thẽIs are identical (k independent) and one has

ρcp− ρ(t) ∼ ρ̃

2
√

16πεt

[
1+ 1+ q

1− q
]
= 1

8
√
πεt
= 0.0705· · ·√

εt
. (13)

The following orders can be extracted in a similar way. For example, the next correction is

ρcp− ρ(t) = 1

8
√
πεt
− a2

(εt)3/2
+O((εt)−5/2) (14)

where

a2 = 2 e4− 4 e2+ 1

512
√
π

= 0.08886· · · . (15)

Figure 2. Numerical results for the coverage for long times, plotted againstεt , compared to the
asymptotic leading order and the Bessel functions’ sum.

Figure 2 presents a comparison of the asymptotic leading order (13) and the series (11)
with numerical results obtained from a lattice ofN = 1.2M sites. It is worth noting again
that the mapping to the reaction–diffusion model is valid only for the long-time regime, for
which the behaviour is dominated by holes far from each other. However, one sees that the
whole series fits the results even for small values ofεt down toεt = 0.1.

In summary, it has been shown that the 1D deposition–diffusion process leads to full
coverage. The short-time dynamics is determined by the temporal monomer concentration.
A fourth-order expansion is given, valid up toεt = 1. The long-time kinetics is dominated
by the attachment of two relatively longk-mers which forms one longk′-mer. This process
is equivalent to the dynamics of a reaction–diffusion process, or to the probability of a RW
to return to the origin. Thus the asymptotic approach of the density to its saturated value
in one dimension is O(1/

√
t). We derive an asymptotic series, based on this equivalency,

valid for the intermediate- and long-time regimes (εt > 0.1).
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